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Abstract

Referring Video Object Segmentation (RVOS) seeks to seg-
ment objects throughout a video based on natural lan-
guage expressions. While existing methods have made
strides in vision-language alignment, they often overlook
the importance of robust video object tracking, where in-
consistent mask tracks can disrupt vision-language align-
ment, leading to suboptimal performance. In this work, we
present Selection by Object Language Alignment (SOLA),
a novel framework that reformulates RVOS into two sub-
problems, track generation and track selection. In track
generation, we leverage a vision foundation model, Seg-
ment Anything Model 2 (SAM2), which generates consis-
tent mask tracks across frames, producing reliable candi-
dates for both foreground and background objects. For
track selection, we propose a light yet effective selection
module that aligns visual and textual features while model-
ing object appearance and motion within video sequences.
This design enables precise motion modeling and align-
ment of the vision language. Our approach achieves state-
of-the-art performance on the challenging MeViS dataset
and demonstrates superior results in zero-shot settings on
the Ref-Youtube-VOS and Ref-DAVIS datasets. Further-
more, SOLA exhibits strong generalization and robustness
in corrupted settings, such as those with added Gaussian
noise or motion blur. Our project page is available at:
https://github.com/cvlab-kaist/SOLA.

1. Introduction
Referring Video Object Segmentation (RVOS) [6, 8, 14, 25]
has recently attracted significant research interest due to its
potential applications in various fields, including interactive
video editing and video surveillance. This task focuses on
segmenting and tracking foreground objects throughout a
video sequence based on a natural language expression.

RVOS, dealing with video data, requires a comprehen-
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Figure 1. Comparison between (a) previous approaches and
(b) proposed SOLA framework. Previous methods [6, 9] simul-
taneously train track generation and vision-language alignment,
whereas our approach focuses solely on training the latter, given
consistent mask track by SAM2. As a result, prior work often gen-
erates inconsistent mask tracks, which in turns shows limited per-
formance as exemplified in (c), while our method produces more
consistent outputs.

sive understanding of temporal dynamics across entire se-
quences to capture object dynamic motion. RVOS meth-
ods [3, 6, 9, 27] require not only mask generation, but also
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precise matching of mask tracks to the given expression.
These approaches generate object tokens frame-by-frame,
for instance, using Mask2Former [4] and match these to-
kens to create candidate object tracks, aligned with sen-
tence embeddings. However, these approaches require the
model to simultaneously learn diverse capabilities, such as
object tracking, motion modeling, and alignment between
language and objects, all within an end-to-end framework.
This often results in noisy tracks that fail to consistently
track the same objects across frames, leading to inconsis-
tent masks. Such inconsistencies hinder motion modeling,
as the model struggles to capture continuous object mo-
tion throughout video tracks, despite advances in vision-
language alignment.

We hypothesize that when high-quality mask tracks are
ensured, motion modeling can become more reliable, allow-
ing the model to focus exclusively on vision-language align-
ment within a simplified setting. In this paper, we reformu-
late the RVOS task into two sub-problems: track generation
and track selection, while assuring high-quality mask tracks
leveraging vision foundation model. Based on this refor-
mulation, we propose a novel framework Selection by Ob-
ject Language Alignment (SOLA) which consists of track
generation followed by track selection. In the track genera-
tion, we leverage a vision foundation model, Segment Any-
thing Model 2 (SAM2) [23], which is capable of generating
consistent object mask tracks across frames, ensuring reli-
able tracking conditions. In the track selection, the focus
shifts to motion modeling and vision-language alignment.
Our novel track selection module directly utilizes the vision
representation obtained during the track generation process
and effectively bridges it with the language representation.
Furthermore, this module effectively models motion and
vision-language alignment, even with its light-weight struc-
ture, by leveraging high-level video object representations
obtained from SAM2 [23]. The intuitive comparison be-
tween previous approaches and our proposed framework is
shown in Figure 1.

In experiments, we evaluate our method on the stan-
dard RVOS benchmarks, such as MeViS [6], Ref-YouTube-
VOS [16], and Ref-DAVIS [13] datasets. Our framework
significantly outperforms prior state-of-the-art methods on
MeViS [6]. The MeViS dataset especially challenges mod-
els to track temporal object sequences guided by complex
language expressions, highlighting our method’s effective-
ness in handling complex scenarios. Our framework fur-
ther demonstrates strong zero-shot performance on Ref-
YouTube-VOS [16] and Ref-DAVIS [13], highlighting the
model’s robustness and generalization capabilities. Our
method demonstrates both robust dense tracking and effec-
tive vision-language alignment, achieving outstanding per-
formance both quantitatively and qualitatively. Addition-
ally, we demonstrate the generalizability and robustness of

SOLA through the presented experiments.
Our main contributions are as follows:

• We propose a novel framework, SOLA, which reformu-
lates the RVOS task into two streamlined sub-problems:
track generation and track selection.By addressing the
challenges in track generation using SAM2, our method
shifts the emphasis to the track selection process, facili-
tating more effective and efficient performance optimiza-
tion.

• We bridge the modality gap between vision and language
representations from frozen models pre-trained in dif-
ferent modalities by introducing a lightweight language-
aligned track selection module. This module effectively
leverages the high-level video object representations of
SAM2 [23] to achieve both motion modeling and vision-
language alignment, ensuring efficient and accurate track
selection.

• Our method achieves new state-of-the-art results on
the MeViS dataset [6] and demonstrates superior per-
formance on the Ref-YouTube-VOS [16] and Ref-
DAVIS [13] datasets in zero-shot settings.

2. Related Work

Referring video object segmentation. Compared to im-
age segmentation, RVOS poses a greater challenge, as it
requires segmenting objects by capturing both action and
appearance from video sequences based on a given expres-
sion. RVOS was first introduced by Gavrilyuk et al.[8]
with the A2D-Sentences benchmark. Since then, RVOS
has garnered significant attention, leading to the develop-
ment of new benchmarks such as Ref-Youtube-VOS, Ref-
DAVIS, and MeViS. Previous models, such as URVOS[25]
and RefVOS [2], have advanced the field by incorporating
cross-modal attention for per-frame segmentation, though
they often overlook temporal information. Recently, query-
based models utilizing Mask2Former [4], such as Refer-
Former [27], MTTR [3], LMPM [6], and DsHmp [9], have
achieved impressive performance. Although previous meth-
ods have shown impressive performance on RVOS, signifi-
cant challenges remain. Generating mask tracks using per-
frame methods with simple cost functions [6, 9, 11] often
fails to link corresponding objects in subsequent frames.

Multi-modal foundation model. Vision foundation mod-
els such as CLIP [22], ALIGN [12], and Grounding
DINO [17] provide strong backbones that show outstand-
ing performance across a wide range of vision task. Trained
on massive, often noisy image-text datasets, these models
include specific encoders for each modality, generating em-
beddings for both images and text. With a contrastive ob-
jective, they are optimized to align embeddings of matching
image-text pairs within random batches. This enables ef-
fective zero-shot applications, such as image-text retrieval
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Figure 2. Overall pipeline of the proposed SOLA framework. Our core idea is to redefine referring video object segmentation as two
sub-problems: track generation and track selection. We first generate candidate mask tracks with the Segment Anything Model 2 [23],
ensuring consistent and clear mask tracks. Then, our light-weight language-aligned track selection module efficiently selects the referred
mask tracks through motion modeling and object-language alignment. During the inference stage, we leverage the visual grounding model,
Grounding DINO [17], for efficient candidate track generation.

and classification via text prompts, achieving robust perfor-
mance across diverse domains.

Segment Anything Model (SAM). SAM [15] is known
as a breakthrough in foundation models for image segmen-
tation, with a unique ability to segment any object within an
image using interactive prompts. Known for its strong zero-
shot transfer capabilities, SAM has proven highly adaptable
across a wide range of vision applications, including ob-
ject segmentation, image editing, and reconstruction. A key
feature of SAM is its flexibility in interpreting various input
formats, such as points, bounding boxes, and text, allow-
ing users to provide segmentation guidance through mul-
tiple modalities and making the model both highly usable
and versatile. Building on SAM, SAM2 [23] extends its ca-
pabilities to video segmentation through a memory-based
transformer. SAM2’s memory stores information about tar-
get objects and past interactions, enabling it to perform seg-
mentation more accurately and efficiently while maintain-
ing strong generalization performance.

In our approach, we directly incorporate these founda-
tion models for consistent and accurate mask prediction,
avoiding the need to train additional models with learnable
parameters. This strategy allows our method to leverage en-
hanced generalization capabilities.

3. Method
For given expression E and T frames of video clip I =
{It}Tt=1, where It ∈ RC×H×W , with H , W , and C denot-
ing height, width and channels of each frame, respectively,
the objective of RVOS is to generate binary mask tracks

M = {Mt}Tt=1, where Mt ∈ {0, 1}H×W corresponds to
the referred object. RVOS poses a significant challenge, as
the model must be capable of dense mask tracking and si-
multaneously ensure alignment between these predictions
and natural language descriptions.

In this paper, we propose a novel framework consisting
of track generation and track selection, by redefining RVOS
as a separated sub-problems of mask tracking and language
alignment. The overview of the proposed approach, named
SOLA, is shown in Figure 2. Specifically, we first gener-
ate candidate mask tracks and their feature representations
by leveraging the well known generalized mask tracker,
SAM2 [23], as detailed in Section 3.2. Next, we select
mask tracks based on their semantic correspondence with
given expression. For track selection, we introduce light-
weight track selection module, in Section 3.3. This module
integrates language and object mask features to effectively
determine their correlation.

3.1. Preliminary - SAM2

SAM2 [23] is a promptable video segmentation model that
consists of an image encoder, a mask decoder, a prompt
encoder, and a memory encoder. Below, we provide an
overview of SAM2 to support the understanding of SOLA.

Prompt Encoder. SAM2 inherits the prompt encoder de-
sign from SAM [15], allowing it to handle video-based
mask predictions. The prompt encoder supports three types
of user inputs: points, bounding boxes, and masks. It gener-
ates prompt tokens representing user inputs that specify the
target object for segmentation.

3



Mask Decoder. The mask decoder takes memory-
conditioned image embeddings from the memory attention
layer and prompt tokens from the prompt encoder as inputs.
It generates three mask predictions, each paired with a pre-
dicted Intersection over Union (IoU) score and an output
mask token. These mask tokens serve as memory values.
The final mask is selected based on the highest IoU score,
and its associated token is converted into an object pointer
to update the memory.

Memory Module. SAM2 incorporates a memory mod-
ule to condition the features of the current frame on both
previous frames and user-provided prompts. Each memory
entry consists of two elements: (1) the spatial embedding
combined with the predicted mask and (2) the object-level
pointer (i.e. mask token). By cross-attending to this mem-
ory, the model ensures that current frame features capture
both fine-grained correspondences and high-level semantic
information.

3.2. Track generation

Object representation in SAM2. Revisiting the architec-
ture of SAM2 [23], the object pointer stored in the spatio-
temporal memory bank serves as an auxiliary high-level se-
mantic representation of the objects to be segmented. Based
on this, we hypothesize that the sequence of object point-
ers for each segment, gathered from the entire video, re-
tains temporal semantic and motion information of the cor-
responding region. Therefore, as we generate N mask track
candidates M ∈ {0, 1}N×T×H×W by SAM2, we simulta-
neously extract object pointers and concatenate them along
the temporal dimension. We define these as object tokens,
O ∈ RN×T×d, of M, where d is the feature dimension.
These object token serve as high-level video object repre-
sentation for determining alignment with language.

Grid point prompt. Considering that SAM2 [23] is a
promptable segmentation model, a key consideration is how
to effectively prompt SAM2 to ensure it generates all the
potential mask tracks. Since some target objects in the
dataset only appear momentarily in video, we adopt a strat-
egy of selecting frames at predefined frame intervals across
the entire video as a prompt frame Ip for mask generation.
This approach allow us to propagate forwards and back-
wards to obtain the mask tracks, ensuring that no object is
missed.

During the training phase, to enhance the robustness of
the model, we extract grid point-originated tracks for di-
versity, regardless of foreground or background. We first
provide Ng grid points P = {P i}Ng

i=1 along with frame Ip
as input to SAM2, and generate Ng of binary masks Mp as

Mp = SAM2Image(Ip;P), (1)

where SAM2Image(·) is SAM2 image predictor. The prompt
masks, Mp are recursively propagated through the input

video I into the SAM2 video predictor SAM2Video(·), to
obtain mask tracks M and object tokens O as

O,M = SAM2Video(I;Mp). (2)

Grounded prompt. Generating tracks based on grid
points produces an unnecessarily large number of mask
tracks, resulting in increased latency. Thus at inference
stage, we leverage visual grounding model, specifically
Grounding DINO (GDINO) [17], enabling it to localize pri-
marily around object candidates relevant to the given ex-
pression E in Ip.

In our framework, GDINO takes Ip and an expression E
as input and predicts ND bounding boxes Bp as follows:

Bp = GDINO(Ip; E), (3)

where Bp ∈ RND×4. Bp localize objects within the frame
that are likely associated with E . Bp are then used by
SAM2Image(·) to recursively generate corresponding seg-
ments Mp, which are propagated to SAM2Video.

Mp = SAM2Image(Ip;Bp)

O,M = SAM2Video(I;Mp).
(4)

Since GDINO [17] tends to primarily localize fore-
ground objects, relying solely on GDINO can result in in-
sufficient contextual information. To address this, we addi-
tionally extract a subset of grid-originated object tokens by
prompting on the first, middle, and last frames of the video.

3.3. Language-aligned track selection

Once we have successfully gathered Nc of candidate mask
tracks and their consistent feature representations, object
tokens, we can address RVOS by selecting tracks that se-
mantically match the given expression. To determine this,
we introduce a lightweight language-aligned track selec-
tion module, which aligns visual and linguistic features and
outputs scores reflecting mask track-expression correspon-
dence. We define these scores as alignment score sa, rep-
resenting the probability of selection. Thus, the module
takes object tokens and text token T as input, and produces
sa ∈ RNc along with an aligned object token Oa ∈ RNc×d.
Here, Oa, a temporally aggregated, language-aligned object
token, serves as the video-level object representation.

Oa, sa = TS(O; T ), (5)

where TS(·) denotes track selection module and T ∈
RNc×Nw×d represents the embedding of Nw tokenized
words extracted by the text encoder.

As depicted in Figure 3, the track selection module is
composed of initial short-term motion encoder followed
by L object-language alignment layers and final language
aligned object aggregation block.
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Figure 3. Architecture of the language-aligned track selection
module. This selection module effectively encodes the dynamics
of objects and aligns them with language.

Short-term motion encoder. Since RVOS deals with
video data, target objects are not limited to appearance cues;
they are often defined by key motion cues. Thus, vision-
language alignment in RVOS requires not only frame-level
object features but also temporal encoding to achieve effec-
tive alignment of two modalities. The initial short term mo-
tion encoder is to encode the momentary motions of objects,
by implementing 1D convolutional network along temporal
dimension of each object token Oi ∈ RT×d.

Object-language alignment layer. As the main compo-
nent of track selection module, the object-language align-
ment layers sequentially perform inter-object attention, mo-
tion attention, and object-to-language attention.

Understanding an object’s motion implies both its inter-
actions with the surrounding environment and its internal
dynamicity. We address these temporal and spatial con-
texts using inter-object attention and motion attention, re-
spectively. Both inter-object and motion attention are stan-
dard self-attention [26], but each operate along a different
dimension for distinct pursuit. Inter-object attention is ap-
plied to all objects within the same frame Ot ∈ RNc×d.
As we aforementioned in Section 3.2, track selection mod-
ule is trained using grid-originating tracks including both
foreground and background tracks evenly. Thus inter-
object attention captures both object relations and object-
background interactions, leading to a comprehensive under-

standing of the global context. We discover its importance
in Section 4.5. In contrast, motion attention aims to aggre-
gate long-term motion information for each object across
the video, operating on the temporal dimension of each ob-
ject token Oi.

With the motion information of object tokens enhanced
through the preceding inter-object and motion attention, we
inject text information using object-to-language cross- at-
tention as previous methods [6, 9]. This cross attention
layer efficiently fuses text features into object tokens O,
where the query, key are the O and T , thereby generating
the language aware object token O′. Finally, O′ is utilized
as an input for language-aligned object aggregation block.

Language-aligned object aggregation. The language-
aligned object aggregation block receives language-aligned
O′ and produces sa as well as an Oa that serves as the ob-
ject representative. We define Oa ∈ RNc×d, which serves
as the object representative, as weighted sum of each ob-
ject token using the frame weighting matrix wa, where wa

is specified by:

wa = softmax(Avg(O′ ⊗ T )), (6)

where ⊗ means matrix multiplication and Avg(·) represents
the mean along the last dimension. Thus, we can obtain Oa

and sa as follows:

Oa = wa ⊗O′,

sa = sigmoid(Avg(O′ ⊗ T )).
(7)

During inference stage, the alignment score of each ob-
ject sia is mapped to the [0, 1] range, following a sigmoid
activation. The i-th mask track is then selected or discarded
based on whether sia exceeds threshold τ .

Training objective. The overall loss L is a combination
of Binary Cross-Entropy (BCE) loss LBCE and alignment
loss Lalign: L = λ1LBCE + λ2Lalign.

The BCE loss LBCE is applied to enforce alignment be-
tween the object features and the language, as follows:

LBCE = − 1

N

N∑
i=0

(
yi log(sia)+(1−yi) log(1−sia)

)
, (8)

where yi represents the ground truth label. Alignment score
sa is defined based on whether the mask track Mi of Oi

corresponds to the target object designated by the E . Specif-
ically yi = 1 if the Intersection over Union (IoU) be-
tween Mi and the segmentation mask of the target object is
greater than a predefined threshold; otherwise yi = 0. This
guides the model to accurately determine whether an object
token derived from a ground truth segment aligns with the
expression when fused with the language feature, thereby
enforcing correct language-object alignment.
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The alignment loss Lalign is a modified form of con-
trastive loss, which encourages each aligned object tokens
Oa to push mismatched sentences away in semantic space,
and vice versa. We define the positive anchor Ap ∈ Rd

as the mean vector of the text token T , while the negative
anchor An ∈ Rd consists of Nneg learnable embeddings.
Lalign is defined as follows:

Lalign = − 1

N

N∑
i=0

(
yiLpos(Oi

a) + (1− yi)Lneg(Oi
a)
)
,

(9)
where

Lpos = d(Oi
a,Ap)−

Nneg∑
j=1

d(Oi
a,Aj

n),

Lneg = d(Oi
a,Ak∗

n )− d(Oi
a,Ap)−

Nneg∑
j=1,j ̸=k∗

d(Oi
a,Aj

n).

(10)

Here, the distance function is computed as d(x,y) = 1 −
cos(x,y), where cos(x,y) is the cosine similarity between
vectors x and y. The index k∗ represents the closest nega-
tive anchor token to the aligned object token.

4. Experiments
4.1. Datasets and evaluation metrics

Dataset. We evaluated our method on three video
datasets: MeViS [6], Ref-YouTubeVOS [16], and Ref-
DAVIS [13]. MeViS, a newly established dataset focused on
motion information analysis, comprises 2,006 videos and
28,570 sentences, which are divided into three subsets: the
training set with 1,712 videos, the validation set with 140
videos, and the testing set with 154 videos. Ref-YouTube-
VOS is the largest RVOS dataset, containing 3,978 videos
with approximately 13,000 annotations. Ref-DAVIS builds
upon DAVIS17 [21] by incorporating linguistic annotations
for a variety of objects, featuring a total of 90 videos.

Evaluation metrics. Following prior research [6, 9, 19],
we evaluate our method on the MeViS dataset using the
commonly used J&F metrics. The J metric, or region
similarity, calculates the Intersection over Union (IoU) be-
tween predicted and ground-truth masks to assess segmen-
tation quality, while the F-measure evaluates contour ac-
curacy. To provide an overall effectiveness score for our
method, we report the average of these two metrics, referred
to as J&F .

4.2. Implementation details

We structure our proposed pipeline into decoupled process:
the track generation and the track selection. The training is
conducted exclusively on the track selection.

Methods J&F J F

URVOS [25] 27.8 25.7 29.9
LBDT [7] 29.3 27.8 30.8
MTTR [3] 30.0 28.8 31.2
ReferFormer [27] 31.0 29.8 32.2
VLT+TC [5] 35.5 33.6 37.3
LMPM [6] 37.2 34.2 40.2
HTR [19] 42.7 39.9 45.5
DsHmp [9] 46.4 43.0 49.8
∗VideoLISA [1] 44.4 41.3 47.6
∗VideoGLaMM [20] 45.2 42.1 48.2

SOLA w/ RoBERTa 48.6 45.2 52.1
SOLA w/ CLIP 47.3 43.6 50.9

Table 1. Quantitative comparison on MeViS [6]. The best re-
sults are in bold and the second best are underlined. ∗ denotes
llm-based methods.

Track generation. We employed GDINO [17] every
fourth frame to generate prompt masks for potential objects.
To ensure sufficient information for each potential object,
we sequentially provided these prompt masks, starting with
the largest mask, as inputs to SAM2 [23] to obtain mask
tracks and object tokens. For each acquired mask track, we
filtered out similar tracks based on their Intersection over
Union (IoU) scores. Starting with the largest mask, we
sequentially removed mask tracks with an IoU exceeding
0.7, following a process similar to Non-Maximum Suppres-
sion (NMS). We utilized the pre-trained Grounding DINO-
T and the pre-trained SAM2 Hiera-L [24] models during
track generation. To obtain diverse yet high-quality mask
tracks, we filtered the mask tracks generated by SAM2. For
the grid prompt, mask tracks were filtered based on stabil-
ity score. Tracks with scores below the set thresholds were
removed from the candidate tracks. We carefully defined
thresholds for stability scores to ensure quality. Addition-
ally, for GDINO, a box threshold of 0.2 was applied to filter
confident bounding boxes.

Language-aligned track selection module. While the
track selection, we train the track selection module ex-
clusively on the MeViS dataset, as all experiments on
the Ref-YouTube-VOS and Ref-DAVIS datasets are con-
ducted in a zero-shot setting. The text encoder utilizes both
RoBERTa [18] and CLIP [22], with training conducted over
13 epochs for the RoBERTa-based model configuration and
11 epochs for the CLIP-based configuration. The loss func-
tion components are weighted with λ1 = 1.0 and λ2 = 0.3,
and the initial learning rate is set to 5e-6, gradually decreas-
ing throughout training. The training process requires ap-
proximately 8 hours on a single RTX 3090 GPU.
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# of trainable Ref-Youtube-VOS Ref-DAVIS
Methods

parameters J&F J F J&F J F

LMPM [6] 66.4M 31.5 30.0 32.9 39.9 36.7 43.2

ReferFormer [12] 70.3M 35.0 34.2 35.8 40.5 36.8 44.2

DsHmp [9] 92.4M 45.8 43.7 47.9 42.6 37.8 47.3

SOLA w/ RoBERTa 32.9M 46.6 42.7 50.6 45.4 43.0 47.7
SOLA w/ CLIP 19.7M 51.3 47.8 54.8 45.5 43.3 47.6

Table 2. Zero-shot quantitative comparison on Ref-YouTubeVOS [16] and Ref-DAVIS [13]. The best results are in bold, and the
second best are underlined. The models are trained on the training set of MeViS [6] and evaluated on Ref-YouTubeVOS and Ref-DAVIS.

Methods Algorithm J&F J F

LMPM [6]

Motion blur

33.3 31.2 35.4
ReferFormer [12] 26.3 25.4 27.1
DsHmp [9] 38.0 35.0 41.1
SOLA w/ RoBERTa 39.8 36.6 43.0
SOLA w/ CLIP 38.6 35.4 41.9

LMPM [6]

Gaussian
noise

36.0 33.4 38.6
ReferFormer [12] 26.9 24.0 29.9
DsHmp [9] 43.4 39.5 47.2
SOLA w/ RoBERTa 44.4 40.5 48.3
SOLA w/ CLIP 43.7 39.9 47.6

Table 3. Quantitative result on a corrupted version of
MeViS [6]. The best results are in bold and the second best are
underlined. The models are trained on the original training set and
evaluated on the corrupted version of the validation set. The im-
age corruption algorithms are derived from ImageNet-C [10], with
corruption severity 5.

Composing corresponding mask tracks As described
in Sec 3.3, when the alignment score of an object to-
ken predicted by the proposed track selection module ex-
ceeds the threshold τ , the corresponding mask track is se-
lected. Tracks with alignment scores above the threshold
are merged at the frame level to produce a single integrated
mask track. In our experiments, we set τ to 0.5 for the
RoBERTa implementation and 0.3 for the CLIP implemen-
tation, respectively.

Labeling. To annotate ground truth labels from grid
prompts, we label each candidate object mask track based
on its Intersection over Union (IoU) with ground-truth ob-
ject mask tracks. If the IoU between a candidate mask track
and any ground-truth track in the set exceeds 0.7, we la-
bel the candidate as a positive sample for the given expres-
sion; otherwise, it is labeled as a negative sample, i.e. back-
ground token.

4.3. Quantitative results

Main results. Table 1 presents the quantitative results of
our method in a fully-supervised setting. We evaluated
comprehensively on the MeViS dataset, widely regarded as
the most challenging dataset in the RVOS field. Our method
achieves the state-of-the-art performance, underscoring its
effectiveness.

Zero-shot evaluation. Since our method leverages the
object tokens obtained from SAM2, we also conducted a
zero-shot experiment to demonstrate the generalization ca-
pability of our approach. We trained our model on the
MeViS dataset and tested it on the Ref-YouTube-VOS and
Ref-DAVIS datasets. As shown in Table 2, SOLA achieved
superior performance, surpassing the previous state-of-the-
art method. Moreover, with respect to the number of learn-
able parameters used in training, our method demonstrates
both efficiency and effectiveness.

Robustness on corrupted data. To demonstrate the ro-
bustness of our method, we evaluated it on a perturbed
dataset with ImageNet-C [10] derived corruption. we inten-
tionally corrupted all video frames with gaussian noise or
motion blur, simulating common distortions in real-world
scenarios such as low-light environments or rapid camera
movements. Since these perturbations represent data types
not originally present in the dataset, our method’s ability
to effectively handle them substantiates its robustness and
highlights its suitability for practical applications. Table 3
presents the quantitative results, showing that our proposed
method outperforms previous approaches [6, 9, 12] even
under image corruption scenarios. This robustness is at-
tributed to reformulating the RVOS into two sub-problems,
one of which addresses the track generation problem by ef-
fectively leveraging the generalized mask tracker, SAM2.

4.4. Qualitative results

In Figure 4, our proposed SOLA method demonstrates ex-
ceptional temporal consistency and precise vision-language
alignment. The model accurately captures both appearance
cues—such as “The cat” and “The cow” attributes—and
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"The cat not engaging with the feather toy took a few steps to the left."

"The cow positioned at the far end."

Figure 4. Qualitative results of our model on MeViS.

complex motion cues, including “moving to right”. This
capability extends even to challenging scenarios in zero-
shot settings, where our model generalizes effectively
across diverse video domains. This robustness is achieved
by leveraging the knowledge from vision foundational
model, SAM2, which provides rich object tokens that rein-
force our model’s understanding of both static and motion-
based language cues. Compared to previous approaches,
our method consistently maintains mask track coherence
and adapts flexibly to varied visual contexts, even in cases
where expressions rely solely on motion (e.g., “chases”,
“pounces”). These results highlight SOLA ’s unique abil-
ity to preserve object continuity and match language cues

with visual motion, a challenge that many existing RVOS
models struggle to address. Overall, our model’s qualitative
performance underscores the advantages of a lightweight
yet effective vision-language alignment module in achiev-
ing high-fidelity segmentation across a range of challeng-
ing scenarios. We show our additional qualitative results in
Appendix A.

4.5. Ablation study

We conducted several ablation studies on the MeViS dataset
using RoBERTa as the text encoder to evaluate the ef-
fectiveness of our proposed selection method and the im-
pact of background token presence. Additionally, we per-
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Methods J&F J F

w/o selection module 36.9 30.0 43.8
w/ selection module 48.6 45.2 52.1

Table 4. Ablation study on the proposed selection method.

formed further ablation studies on associated loss functions
and components within the language-aligned track selection
module.

Effect of the proposed selection method. The quan-
titative results in Table 4 demonstrate that our track-
selection-based method effectively addresses the challenges
of RVOS. w/o selection module indicates an approach
solely based on Grounding DINO [17] without specific
track selection, while w/ selection module represents our
framework, SOLA, which selects the referred track based
on motion-encoded, language-aligned object tokens.

Existence of background object tokens. The quantita-
tive results presented in Table 5a underscore the critical
role of incorporating background object tokens during both
training and inference. Given that the inter-object attention
mechanism within the track selection module is designed
to capture relationships among diverse object tracks, the in-
clusion of background object tokens in both training and in-
ference significantly enhances performance. This compre-
hensive interaction between foreground and background ob-
jects proves indispensable, enabling a more holistic video-
level understanding of language.

Ablation on losses. In Table 5b, we evaluate the model’s
performance under different loss configurations. When us-
ing only BCE loss (w/o Lalign), we observe a performance
reduction of 4.1 J&F compared to the combined setting
of BCE and alignment loss (w/ Lalign). This result indi-
cates that alignment loss enhances the model’s discrimina-
tive ability, improving its alignment with the given expres-
sion.

Ablation on different types of attention. Table 5c
presents the model’s performance with different types of
attention layers. When only motion attention is used, the
model aggregates long-term temporal information across
frames, enhancing motion modeling but lacking insight into
relationships among objects within each frame. Conversely,
using only inter-object attention encodes spatial relation-
ships among all objects in each frame, including both fore-
ground and background, providing a comprehensive spatial
context but lacking temporal continuity and object motion
information. The configuration that combines both motion
and inter-object attention represents our full method, en-
riching the model’s understanding of both spatial and tem-
poral aspects and resulting in a more robust representation
of object tokens.

bg. tokens bg. tokens Metrics
(train) (inference) J&F J F

✗ ✗ 45.7 42.4 48.9
✓ ✗ 47.5 43.9 51.1
✓ ✓ 48.6 45.2 52.1

(a) Effects of including background object tokens.

Methods
Metrics

J&F J F

w/o Lalign 44.5 41.4 47.6
w/ Lalign 48.6 45.2 52.1

(b) Different loss functions.

inter-object motion Metrics
attn. attn. J&F J F

✗ ✓ 44.3 41.6 47.0
✓ ✗ 44.9 42.2 47.0
✓ ✓ 48.6 45.2 52.1

(c) Effects of employing different types of attention layers.

# of Alignment Layers J&F J F

1 42.5 40.0 45.1
2 48.6 45.2 52.1
3 48.2 44.8 51.5

(d) Effects of the number of object-language alignment layers.

Table 5. Ablation studies on various settings of our method.

Ablation on the number of object-language alignment
layers Table 5d shows the results of using different num-
bers of attention block layers. With a single layer, the
model has limited attention capacity, potentially missing
finer spatial-temporal relationships. Our two-layer setup
achieves a balanced representation, effectively capturing
object interactions and motion patterns. However, using
three layers can result in overfitting, leading to slight per-
formance degradation.

5. Conclusion and Discussion
We propose SOLA, a novel framework that simplifies the
RVOS task into a selection problem. It leverages a founda-
tion model to generate consistent candidate mask tracks and
selects the most relevant one based on a given expression.
Through our lightweight vision-language module, which
captures appearance and motion, SOLA selects the mask
track that best corresponds to the expression. Combined
with state-of-the-art video segmentation models, our
approach achieves leading performance on RVOS bench-
marks, demonstrating exceptional generalization ability.
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Referring Video Object Segmentation via Language-aligned Track Selection

Supplementary Material

A. Additional qualitative results
We provide the qualitative results for our model, emphasiz-
ing its effectiveness in addressing the challenges of refer-
ring video object segmentation (RVOS).

A.1. Qualitative results on MeViS

Figure A.1 presents the qualitative results on MeViS [6],
comparing the performance of DsHmp [9] with our pro-
posed method, SOLA. Our approach consistently demon-
strates superior capability in accurately segmenting the tar-
get object as specified by the referring expression. Specif-
ically, Figure A.2 illustrates scenarios involving a single
video with two distinct expressions. SOLA accurately iden-
tifies the precise object corresponding to each expression,
whereas DsHmp demonstrates limitations in distinguishing
between objects described by different expressions. Fig-
ure A.3 illustrates a scenario where the given expression ex-
clusively describes motion-related information (e.g., “Go-
ing right.”). Even in such scenarios, our proposed selec-
tion module performs motion modeling based on consis-
tent mask tracks, enabling the model to effectively encode
motion information for language alignment. Consequently,
it can establish correspondence with the expression using
motion cues from the language alone, independently of
appearance-based features.

A.2. Qualitative results on Ref-Youtube-VOS

Figure A.4 presents the qualitative results on the Ref-
Youtube-VOS [25] dataset in a zero-shot setting, where
the model has been trained on MeViS dataset. The results
highlights our model’s remarkable capability to generalize
across diverse videos and expressions, despite not having
seen the dataset during training. Such zero-shot generaliza-
tion underscores the strength of our approach in leveraging
pre-trained knowledge of SAM2 [23] and aligning it effi-
ciently with natural language expressions.

A.3. Qualitative results on MeViS with image cor-
ruption.

Figures A.5 and A.6 visualize the results presented in Ta-
ble 3 of the main paper. These results demonstrate that
SOLA consistently retains its ability to generate high-
quality final mask outputs regardless of the level of distor-
tion in the input data.
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Figure A.1. Qualitative results on MeViS [6]. Our proposed method outperforms previous state-of-the-art approaches [9] in terms of
mask quality and tracking ability, while ensuring accurate segmentation of the corresponding object based on the given expression.
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One Video Two Expressions
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Figure A.2. Qualitative results on MeViS [6]. Our proposed method outperforms previous state-of-the-art approaches [9] in terms of
mask quality and tracking ability, while ensuring accurate segmentation of the corresponding object based on the given expression.

14



Only Motion Expression
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Figure A.3. Qualitative results on MeViS [6]. Our proposed method outperforms previous state-of-the-art approaches [9] in terms
of mask quality and tracking ability, while ensuring accurate segmentation of the corresponding object based on the given expression.
Notably, despite the given expression focusing solely on motion information, our model effectively handles the task without relying on
appearance cues.
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Figure A.4. Qualitative results on Ref-Youtube-VOS [25]. Our proposed method outperforms previous state-of-the-art approaches [9] in
terms of mask quality and tracking ability, while ensuring accurate segmentation of the corresponding object based on the given expression.
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Figure A.5. Qualitative results on corrupted version of MeViS [6]. Despite the gaussian noise distortion, our method generates high-
quality outputs, demonstrating its robustness and effectiveness in handling perturbed data. Compared to previous work, our results maintain
their performance even under the corrupted setting.
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Figure A.6. Qualitative results on corrupted version of MeViS [6]. Despite the motion blur distortion, our method generates high-quality
outputs, demonstrating its robustness and effectiveness in handling perturbed data. Compared to previous work, our results maintain their
performance even under the corrupted setting.
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B. Limitations and future works
B.1. Limitations

Moreover, the training objectives of the text encoder and
the RVOS model differ: the text encoder is trained to iden-
tify the best matching words from the vocabulary, while the
RVOS model focuses on extracting key cues from sentences
essential for locating the corresponding objects. We aim to
explore tuning the text encoder to capture features that are
particularly beneficial for the RVOS task.

As discussed in the main paper, we further address ad-
ditional limitations of SOLA. Since our framework lever-
ages two different modal encoders from independent do-
mains, aligning both modalities with scarce data may limit
its performance. Specifically, MeViS only has 2,006 videos
which is extremely smaller than other multi-modal bench-
marks, specially video captioning datasets [28]. Addition-
ally, while current state-of-the-art mask trackers demon-
strate impressive performance, they still struggle to consis-
tently track objects in scenarios with heavy occlusion and
motion blur. Since the performance of SOLA relies heavily
on the quality of the mask tracker, these challenges can lead
to a degradation in SOLA’s overall performance. We antic-
ipate that SOLA could achieve even better results as more
advanced mask trackers are developed.

B.2. Future work

In this section, we discuss future work aimed at addressing
the limitations of SOLA while ensuring its efficiency. Since
our method generates candidate mask tracks by simultane-
ously utilizing grid and grounded prompts, running SOLA
in real time is challenging due to enormous input prompts.
However, tasks requiring real-time inference, such as au-
tonomous driving, demand methods that are both efficient
and fast. Additionally, it is crucial for SOLA to operate
in an online manner, segmenting tracks without processing
the entire video at once. We aim to explore future directions
that overcome these limitations, enabling SOLA to perform
real-time inference effectively.
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