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Abstract

Referring video object segmentation (RVOS) requires track-
ing and segmenting an object throughout a video accord-
ing to a given natural language expression, demanding both
complex motion understanding and the alignment of visual
representations with language descriptions. Given these
challenges, the recently proposed Segment Anything Model
2 (SAM2) emerges as a potential candidate due to its abil-
ity to generate coherent segmentation mask tracks across
video frames, and provide an inherent spatio-temporal ob-
jectness in its object token representations. In this pa-
per, we introduce SOLA (Selection by Object Language
Alignment), a novel framework that leverages SAM2 object
tokens as compact video-level object representations, which
are aligned with language features through a lightweight
track selection module. To effectively facilitate this align-
ment, we propose an IoU-based pseudo-labeling strategy,
which bridges the modality gap between SAM2 representa-
tions with language features. Extensive experiments show
that SOLA achieves state-of-the-art performance on the
MeViS dataset and demonstrate that SOLA offers an effec-
tive solution for RVOS. Our project page is available at:
https://github.com/cvlab-kaist/SOLA.

1. Introduction

Referring video object segmentation (RVOS) [4, 7, 14, 25]
aims to identify and segment a specific object throughout
a video sequence based on a natural language expression.
RVOS has recently attracted significant research interest
due to its broad applicability in various fields, including in-
teractive video editing and human-robot interaction. How-
ever, RVOS presents several challenges, as the model must
integrate both natural language comprehension and visual
understanding at both the scene and object levels.

Recently, segment anything model (SAM) [15] has
emerged as a powerful models in the field of segmenta-
tion, demonstrating remarkable performance across various
tasks. In particular, SAM2 [24] excels in generating seg-
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Figure 1. Teaser. Our method effectively bridges the modality gap
by aligning the features obtained from fully frozen uni-modal en-
coders: the video segmentation model such as SAM2 [24] and the
text encoder such as RoBERTa [20]. By directly leveraging the
token representations, our approach achieves lightweight multi-
modal alignment while significantly reducing the number of train-
able parameters.

mentation masks across video frames, an essential capa-
bility for accurate object tracking and motion modeling in
dynamic environments. Since generation of segmentation
mask tracks inherently requires maintaining object iden-
tity over time, SAM2 implicitly captures temporal-aware
object information at the video level. This characteristic
makes SAM2 highly relevant for addressing the challenges
of RVOS. Despite this potential, certain challenges arise in
directly applying SAM2 to RVOS, as SAM2 is designed
solely for segmentation and lacks an understanding of nat-
ural language. Moreover, while SAM2 effectively encodes
object information, how to exploit this inherent knowledge
remains an important question.

Based on the observation that SAM2’s object token rep-
resentations inherently capture temporally consistent ob-
ject regions, our SOLA (Selection by Object Language
Alignment) framework leverages these tokens as compact
video-level representations, enabling robust motion under-
standing—crucial for RVOS. To associate objects with lan-
guage, we introduce a lightweight language-aligned track
selection module, effectively bridges the modality gap be-
tween SAM2’s object token representations and language
features, as illustrated in Figure 1. Notably, SOLA uti-
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lizes solely precomputed object tokens, enabling efficient
training on a single GPU while preserving SAM2’s ro-
bustness and generalizability. Additionally, we introduce
a novel training strategy that leverages IoU (Intersection
over Union)-based pseudo-labels to supervise a simple bi-
nary classification objective, complemented by a contrastive
loss designed to highlight detailed motion patterns. To uti-
lize precomputed object tokens during training, we gener-
ate pseudo-labels based on the IoU between the mask track
corresponding to the precomputed object tokens and the
ground truth mask track associated with the given referring
expression.

In our experiments, we evaluate our method on standard
RVOS benchmarks, including MeViS [4], Ref-YouTube-
VOS [16], and Ref-DAVIS [13]. Our framework achieves
state-of-the-art performance on MeViS, demonstrating its
effectiveness in tracking object sequences guided by com-
plex language expressions. Additionally, our method ex-
hibits strong generalizability and robustness across diverse
settings, including zero-shot and combined dataset evalua-
tion. Our method achieves both high-quality tracking and
effective multi-modal alignment, excelling in both quanti-
tative and qualitative evaluations.

Our main contributions are as follows:
• We propose SOLA, a novel framework that, for the first

time, utilizes SAM2’s object token representations for
RVOS. We hypothesize that these tokens inherently en-
code temporal-aware objectness, enabling effective mo-
tion modeling of an object.

• By introducing a lightweight language-aligned track se-
lection module that relies exclusively on object tokens.
This approach allows for the use of precomputed tokens,
enabling efficient training on a single GPU.

• We adopt a novel training strategy that utilizes IoU-based
pseudo-labels for object tokens, enabling our language-
aligned track selection module to effectively bridge the
modality gap between SAM2’s object representations and
language features.

• Our method achieves new state-of-the-art results on the
MeViS dataset [4] and demonstrates strong generaliza-
tion on Ref-YouTube-VOS [16] and Ref-DAVIS [13], ex-
celling in both quantitative and qualitative evaluations.

2. Related Work
Referring video object segmentation. RVOS requires
segmenting objects by capturing both action and appearance
from video sequences based on a given expression. RVOS
was first introduced by Gavrilyuk et al. [7] with the A2D-
Sentences benchmark. Since then, RVOS has garnered sig-
nificant attention, leading to the development of bench-
marks such as Ref-YouTube-VOS [16], Ref-DAVIS [13],
and MeViS [4].

Recently, query-based models [2, 4, 9, 21, 28] have

achieved impressive performance by leveraging object
query tokens. These tokens are expected to capture spatial
properties, appearance, and temporal dynamics while main-
taining temporally consistent object mask tracks. Other ap-
proaches [8, 17] enhance language alignment by employing
object tokens pre-aligned with language features. Thereby,
solving RVOS demands a model that ensures temporal con-
sistency while effectively linking textual descriptions with
visual representations containing various object informa-
tion.
Segment anything model. SAM [15] is known as a break-
through in foundation models for image segmentation, with
a unique ability to segment any object within an image us-
ing interactive prompts. Building on SAM, SAM2 [24]
extends its capabilities to video segmentation through a
memory-based transformer. SAM2’s memory stores infor-
mation about target objects and past interactions, enabling
it to perform segmentation more accurately and efficiently
while maintaining strong generalization performance.

There are previous approaches [11, 18] that utilizes SAM
or SAM2 in RVOS task. However, these approaches pre-
dominantly use them only at the prompting level, treat-
ing them merely as powerful mask generation tools with-
out tapping into their rich internal representations for more
advanced video-level object understanding. Ref-SAM [18]
processes textual inputs by projecting them into sparse and
dense prompts, but these prompts mainly tied to image-
level, propagating from a selected object through an implicit
tracking module. As a result, it struggles to handle complex
motion across an entire video sequence or to differentiate
among objects of similar classes. Similarly, AL-RefSAM
2 [11] assigns the spatio-temporal reasoning capability on
GPT-4 [1] and Grounding DINO [19]. They select pivot
frames via GPT, detect objects using Grounding DINO,
and then pick specific bounding boxes that best match the
given language expression with GPT again. Consequently,
these methods struggle to leverage video-level context and
capture the object-level details necessary for understanding
complex motion and inter-object distinctions.

3. Method

3.1. Overview

For given T frames of video clip V = {It}Tt=1, each frame
It ∈ RC×H×W has height H , width W , and C channels.
In RVOS, a language expression is provided as additional
input, and the text encoder tokenizes it into text tokens
E ∈ RNw×D, where Nw denotes the number of tokenized
words. The objective of RVOS is to generate binary mask
tracks B = {Bt}Tt=1, where each mask Bt ∈ {0, 1}H×W

corresponds to the referred objects at time t.
To address this, we propose a novel framework SOLA,

which, for the first time, leverages SAM2 object token to ef-
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Figure 2. Overall pipeline of the proposed SOLA framework. Our method selects the correct object mask track among candidates
via a language-aligned track selection module. We first generate candidate mask tracks and corresponding object tokens from the fully
frozen SAM2. These tokens are then aligned with language expressions, producing alignment scores that indicate selection probabilities.
Mask tracks with scores above a predefined threshold are selected and merged into the final binary segmentation mask. By leveraging
precomputed object tokens from SAM2, our approach minimizes trainable parameters, enabling efficient training on a single GPU.

ficiently bridge SAM2’s knowledge with language features,
as illustrated in Figure 2. Specifically, we first generate N
candidate mask tracks M ∈ {0, 1}N×T×H×W and their
corresponding object tokens O ∈ RN×T×D using SAM2,
where D denotes the feature dimension. Next, we select the
Nv valid mask tracks Mv ∈ RNv×T×H×W that align with
the given expression from the candidates M through our
lightweight language-aligned track selection module. This
module efficiently bridges the modality gap between the ob-
ject token representations of SAM2 and language features.
Through this process, our framework obtain high-quality
object mask tracks that are precisely aligned with complex
natural language expressions.

3.2. Preliminary - SAM2

In this section, we provide an overview of the Segment any-
thing model 2 (SAM2) [24], which is a promptable video
segmentation model that consists of an image encoder, a
prompt encoder, a mask decoder, and a memory encoder.
Image encoder. The image encoder extracts high-
resolution image embeddings from individual frames.
These spatial features retains detailed object and scene in-
formation. The embeddings are later conditioned on user
prompts and past memory for mask generation.
Prompt encoder. The prompt encoder supports three types
of user inputs: points Pg , bounding boxes Pb, and masks
Pm. It generates prompt tokens representing user inputs
that specify the target object for segmentation.
Mask decoder. The mask decoder takes memory-

conditioned image embeddings from the memory attention
layer and prompt tokens from the prompt encoder as inputs.
It generates three mask predictions, each paired with a pre-
dicted Intersection over Union (IoU) score and an output
mask token. These mask tokens serve as memory values.
The final mask is selected based on the highest IoU score,
and its associated token is converted into an object pointer
Oi,t ∈ RD at time t to update the memory for i = 1, . . . , N
and t = 1, . . . , T .
Memory module. SAM2 incorporates a memory module
that conditions the features of the current frame on both
previous frames and user-provided prompts. Each memory
entry consists of two elements: the spatial embedding fused
with the predicted mask and a corresponding mask token.
By cross-attending to this memory, the model effectively
captures fine-grained correspondences and spatial informa-
tion, ensuring temporal consistency across frames.

3.3. Track generation

As our method select the valid mask tracks among the can-
didates, we first prompt SAM2 to ensure it generates all
the objects exist in a video. Since some objects only ap-
pear momentarily, we adopt a strategy of selecting frames
at predefined frame intervals as a prompt frame Ip for mask
generation.
Prompt mask generation. We use two types of input
prompts: grid points Pg , and bounding boxes Pb, along
with frame Ip. The bounding boxes are obtained from exter-
nal object detection models, only for inference to efficiently
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capture potential objects. These prompts are used to gener-
ate N binary masks Mp ∈ {0, 1}N×H×W , as

Mp = SAM2Image(Ip; {Pg,Pb}), (1)

where SAM2Image(·) denotes the SAM2 image predictor.
Mask track propagation. The generated masks Mp are
propagated both forward and backward across the entire
video V by the SAM2 video predictor SAM2Video(·), to ob-
tain mask tracks M and the corresponding object tokens O:

O,M = SAM2Video(V;Mp). (2)

Notably, grid point prompts Pg cover both the foreground
objects and the surrounding background, as the points are
evenly distributed across the frame.

3.4. Object representation
Revisiting the architecture of SAM2 [24], the object pointer
obtained from the spatiotemporal-aware memory bank
serves as an auxiliary high-level representation of the ob-
jects to be segmented. Specifically, each object pointer
Oi,t, corresponding to a mask Mi,t within a frame, is
hypothesized to encode certain object-level information at
that timestep t. Consequently, the sequence of these ob-
ject pointers accumulated over time can be considered as
temporal-aware object information, which inherently cap-
tures object motion. Based on this intuition, as we generate
N candidate mask tracks M using SAM2, we simultane-
ously extract T object pointers {Oi,t}Tt=1 per track i and
concatenate them along the temporal dimension. We define
the resulting representation as the object token, denoted as
Oi, which encapsulates both spatial and motion character-
istics of the object over time. Motivated by these consid-
erations, we utilizes these object tokens to model complex
motions of objects.

3.5. Track selection
Once we successfully gather N candidate mask tracks and
their consistent feature representations, O, we can ad-
dress RVOS by selecting tracks that semantically match
the given expression. To determine this, we introduce
a lightweight language-aligned track selection module,
which aligns SAM2’s token representations and language
features, thus outputs scores reflecting correspondence be-
tween each mask track and given language expression. We
define these scores as alignment score sa, representing the
probability of selection. Thus, the module takes object to-
kens O and text tokens E as input, and produces sa ∈ RN

along with an alignment token Oa ∈ RN×D.

Oa, sa = TS(O; E), (3)

where TS(·) denotes the track selection module. As de-
picted in Figure 3, the track selection module is composed

of short-term motion encoder followed by object-language
alignment layers and language aligned motion aggregation
module.
Short-term motion encoder. Since RVOS deals with video
data, target objects are not limited to appearance cues;
they are often defined by key motion cues. Thus, vision-
language alignment in RVOS requires not only frame-level
object features but also temporal encoding. The initial short
term motion encoder is to encode the momentary motions of
objects, by implementing 1D convolutional network along
temporal dimension of each object token. The output ob-
ject token is Oi ∈ RT ′×D, where T ′ denotes the reduced
temporal dimension.
Object-language alignment layer. The object-language
alignment layer, repeats L times, sequentially performs
three types of attention layers: inter-object attention, mo-
tion attention, and object-to-language attention.

Understanding an object’s motion implies both its inter-
actions with the surrounding environment and its internal
dynamicity. We address these temporal and spatial contexts
using motion attention and inter-object attention, respec-
tively. Both attentions are standard self-attention [26], but
each operate along a different dimension for distinct pursuit.

Inter-object attention is applied to all object tokens Ot ∈
RN×D within the same frame t. As we aforementioned in
Section 3.3, using grid point prompts allows us to obtain
mask tracks correspond to both foreground and background
regions. Thus inter-object attention between all these tokens
captures both object relations and interactions between ob-
jects and surroundings, leading to a comprehensive under-
standing of the global context. On the other hand, motion
attention aims to aggregate long-term motion information
for each object throughout the video, operating along the
temporal dimension of each object token Oi ∈ RT ′×D.

Subsequently, we employ object-to-language cross-
attention to align visual object tokens O with language fea-
tures E , generating language-aligned object token O′ ∈
RN×T ′×D. Finally, these alignment tokens O′ serves a in-
put to the language-aligned object aggregation block for fur-
ther processing.
Language-aligned object aggregation. The language-
aligned object aggregation block takes the language-aligned
object token O′ as input and outputs sa along with Oa

which serves as the object representative. We define Oa ∈
RN×D as the weighted sum of object tokens, computed us-
ing the frame weighting matrix wa ∈ RN×T ′

, given by:

wa = softmax(AvgNw
(O′ET)), (4)

where AvgNw
(·) represents the mean along the Nw dimen-

sion. Using such operation, we can obtain Oa and sa as
follows:

Oa = AvgT (wa ⊗O′),

sa = sigmoid(AvgT (AvgNw
(O′ET))),

(5)
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Figure 3. Architecture of the language-aligned track selection
module, which takes object tokens and text tokens as inputs, align-
ing these representations to effectively capture object dynamics.

where ⊗ denotes element-wise multiplication operation,
and AvgT (·) represents the mean along the T dimension.

Here, Oa, is not only aligned with the language expres-
sion but has also incorporated temporally aggregated mo-
tion information, making it a rich video-level object repre-
sentation. Then, the alignment score of each object sia is
mapped to the [0, 1] range, following a sigmoid activation.
The i-th mask track is then selected or discarded based on
whether sia exceeds threshold τ . The selected mask tracks
Mv are merged to form the final output binary mask track
B for the given expression.

3.6. Training objective
Pseudo labeling. As we utilize SAM2 object token rep-
resentations in a fully frozen state, our goal is to select the
correct object tokens, representing SAM2 generated mask
tracks, that matches to the referred object in a given expres-
sion. However, since RVOS datasets provide only language
expressions paired with ground-truth mask tracks, there is
no explicit label for each generated mask tracks and cor-
responding object token. This means that direct supervi-
sion for learning alignment between SAM2 object tokens
and language features is unavailable in current setting. To
address this issue, we introduce a novel IoU-based pseudo-
labeling strategy that enables our model to directly identify
which generated mask tracks correspond to a given expres-

sion. Specifically, we compute the mean Intersection over
Union (mIoU) between each candidate mask track and the
ground-truth track associated with that expression. Candi-
date object tokens exceeding predefined mIoU threshold τ
are labeled as positive samples, while the rest are labeled as
negative samples. The core motivation of this approach is
to create a reliable supervision signal that bridges the gap
between the frozen SAM2 object tokens and the language
expressions. This mIoU-based pseudo-labeling strategy not
only provides a clear supervision but also simplifies training
to a straightforward binary classification objective.
Loss functions. The total loss L is a combination of Binary
Cross-Entropy (BCE) loss LBCE and alignment loss Lalign:
L = λ1LBCE + λ2Lalign.

The BCE loss LBCE is applied to enforce alignment be-
tween the object features and the language, as follows:

LBCE = − 1

N

N∑
i=1

(
yi log(sia)+(1−yi) log(1−sia)

)
, (6)

where yi represents the pseudo binary classification label.
Alignment score sa is defined based on whether the mask
track Mi of Oi corresponds to the target object designated
by the E .

The alignment loss Lalign is a modified form of con-
trastive loss, designed to encourage each alignment token
Oi

a to push mismatched sentences away in semantic space,
and vice versa. We define the positive anchor Ap ∈ RD

as the mean vector of the text tokens E , ensuring semantic
closeness between corresponding tokens. In contrast, the
negative anchors An ∈ RNneg×D consists of Nneg learnable
embeddings, which are trained to represent a distinct neg-
ative latent space, forcing the tokens to be pushed farther
apart. Lalign is defined as follows:

Lalign = − 1

N

N∑
i=1

(
yiLpos(Oi

a) + (1− yi)Lneg(Oi
a)
)
,

(7)
where

Lpos = d(Oi
a,Ap)−

Nneg∑
j=1

d(Oi
a,Aj

n),

Lneg = d(Oi
a,Ak∗

n )− d(Oi
a,Ap)−

Nneg∑
j=1,j ̸=k∗

d(Oi
a,Aj

n).

(8)

Here, the distance function is computed as d(x,y) = 1 −
cos(x,y), where cos(x,y) is the cosine similarity between
vectors x and y. The index k∗ represents the closest nega-
tive anchor to the alignment token.
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4. Experiments
4.1. Datasets and evaluation metrics
Dataset. We evaluate our method on three video datasets:
MeViS [4], Ref-YouTube-VOS [25], and Ref-DAVIS [13].
MeViS, a newly established dataset focused on motion in-
formation analysis, comprises 2,006 videos and 28,570 sen-
tences, which are divided into three subsets: the training
set with 1,712 videos, the validation set with 140 videos,
and the testing set with 154 videos. Ref-YouTube-VOS is
the largest RVOS dataset, containing 3,978 videos with ap-
proximately 13,000 annotations. Ref-DAVIS builds upon
DAVIS17 [23] by incorporating linguistic annotations for a
variety of objects, featuring a total of 90 videos.
Evaluation metrics. Following [4, 9, 21], we evaluate
our method on the MeViS dataset using the commonly
used J&F metrics. The J metric, or region similarity,
calculates the Intersection over Union (IoU) between pre-
dicted and ground-truth masks to assess segmentation qual-
ity, while the F-measure evaluates contour accuracy. To
provide an overall effectiveness score for our method, we
report the average of these two metrics, referred to as J&F .

4.2. Implementation details
Precomputing SAM2 object tokens. Since we utilize
SAM2 in a fully frozen state, training focuses exclusively
on the language-aligned selection module. Inspired by
FuseMix [27], we precompute SAM2 mask tracks on the
RVOS dataset, eliminating the need for on-the-fly inference
during training. This approach enables efficient training,
taking approximately 7 hours on a single RTX 3090 GPU
using the MeViS [4] dataset.
Track generation. We generate mask tracks using SAM2-
L [24], prompted by grid points and bounding boxes ob-
tained from Grounding DINO-T [19] every fourth frame. To
avoid generating redundant tracks, we apply IoU-based fil-
tering, similar to Non-Maximum Suppression (NMS) [22],
propagating only distinct prompt masks.
Language-aligned track selection module. We employ
pre-trained RoBERTa [20] as the text encoder. Hyperpa-
rameters are set as follows: Nneg = 32 for number of neg-
ative anchors, and loss weights of λ1 = 1.0, λ2 = 0.3 and
τ = 0.5 for selection thresholding.

4.3. Quantitative results
Main results. Table 1 presents the quantitative results of
our method on the MeViS [4] dataset, which is widely re-
garded as the most challenging benchmark in the RVOS
field. Our method achieves state-of-the-art performance,
underscoring its effectiveness. Additionally, compared to
previous methods, SOLA significantly reduces the number
of trainable parameters to 32.9M while achieving the high-
est J&F score of 48.6. This low number of trainable pa-

Methods
# of trainable Metrics
parameters J&F J F

URVOS [25] - 27.8 25.7 29.9
LBDT [5] 95.6 M 29.3 27.8 30.8
MTTR [2] - 30.0 28.8 31.2
ReferFormer [28] 112.9 M 31.0 29.8 32.2
VLT+TC [3] 38.3 M 35.5 33.6 37.3
LMPM [4] 66.4 M 37.2 34.2 40.2
HTR [21] - 42.7 39.9 45.5
DsHmp [9] 92.4 M 46.4 43.0 49.8

SOLA 32.9 M 48.6 45.2 52.1

Table 1. Quantitative comparison on MeViS. The best results are
highlighted in bold, and the second-best results are underlined.

Ref-YouTube-VOS Ref-DAVIS
Methods

J&F J F J&F J F

ReferFormer [12] 35.0 34.2 35.8 40.5 36.8 44.2
LMPM [4] 31.5 30.0 32.9 39.9 36.7 43.2
DsHmp [9] 45.8 43.7 47.9 42.6 37.8 47.3

SOLA 47.9 44.3 51.5 45.4 43.0 47.7

Table 2. Zero-shot quantitative comparison on Ref-YouTube-
VOS and Ref-DAVIS. The best results are in bold. The models
are trained on the training set of MeViS and evaluated on Ref-
YouTube-VOS and Ref-DAVIS.

MeViS Ref-YouTube-VOS
Methods

J&F J F J&F J F

ReferFormer [12] 36.6 34.1 39.1 46.8 46.2 47.5
LMPM [4] 40.5 37.8 43.2 37.6 36.0 39.2
DsHmp [9] 42.5 37.5 47.4 51.4 48.5 54.3

SOLA 48.9 45.2 52.6 55.4 52.0 58.8

Table 3. Quantitative comparison on combined dataset. The
best results are in bold. The models are jointly trained on the
training sets of MeViS and Ref-YouTube-VOS and evaluated sep-
arately on their respective evaluation datasets.

rameters is achieved through our design, which relies solely
exclusively on object tokens.
Zero-shot evaluation. Since our method utilizes object to-
kens obtained from SAM2 in a fully frozen state, we con-
ducted a zero-shot experiment to evaluate its generalization
capability. We trained our model on the MeViS [4] dataset
and evaluated it on the Ref-YouTube-VOS [25] and Ref-
DAVIS [13] datasets. As shown in Table 2, SOLA achieved
superior performance, surpassing the previous state-of-the-
art methods. This demonstrates that our approach not only
effectively bridges the modality gap between SAM2 token
features and language features but also inherits the intrinsic
robustness of SAM2 representations.
Combined dataset evaluation. Table 3 presents the quan-
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Methods J&F J F

w/o selection module 36.9 30.0 43.8
w/ selection module 48.6 45.2 52.1

Table 4. Ablation study on our proposed selection method.

Methods J&F J F

w/o Lalign 44.5 41.4 47.6
w/ Lalign 48.6 45.2 52.1

(a) Different loss functions.

Inter-object attn. Motion attn. J&F J F

✗ ✓ 44.3 41.6 47.0
✓ ✗ 44.9 42.2 47.0
✓ ✓ 48.6 45.2 52.1

(b) Effects of employing different types of attention layers.

Table 5. Ablation studies on various settings of our method.

titative results obtained by training on a naively combined
dataset of MeViS [4] and Ref-YouTube-VOS [25], fol-
lowed by individual evaluations on each dataset. The re-
sults highlight the robustness of our method, as it maintains
strong performance across different datasets without requir-
ing dataset-specific tuning. Furthermore, the scalability of
our approach is evident, as it effectively leverages multi-
ple datasets without performance degradation, suggesting
its potential for broader generalization in RVOS.

4.4. Ablation studies
We conduct our ablation studies on the MeViS [4] dataset to
examine the effectiveness of our proposed language-aligned
selection module and its components.
Effect of the proposed selection method. The quantita-
tive results in Table 4 demonstrate that our language-aligned
track selection module effectively interprets complex lan-
guage expressions. w/o selection module refers to an base-
line approach that relies solely on Grounding DINO [19],
which detects objects at the frame level by understanding
the correspondence between text and objects in an image.
However, this approach does not incorporate temporal in-
formation, limiting its ability to associate objects with mo-
tion patterns or temporal events described in the text. Con-
sequently, it struggles with understanding complex expres-
sions that require video-level reasoning. In contrast, w/ se-
lection module represents our framework, SOLA, which se-
lects the referred object tracks from the candidates by lever-
aging language-aligned object tokens. By considering both
spatial and temporal information, our selection module en-
ables a more comprehensive understanding of complex ex-
pressions, leading to improved RVOS.
Ablation on losses. In Table 5a, we evaluate the model’s
performance under different loss configurations. When us-

Figure 4. Spatial and motion information in object tokens. The
bold line represents the mean similarity, while the shaded region
indicates the variance. The results show a certain correlation: as
the mIoU between mask tracks increases, the similarity between
their associated tokens also rises nearly proportionally. This ten-
dency suggests that object tokens inherently capture spatial infor-
mation, implicitly encoding object motions over time.

ing only BCE loss (w/o Lalign), we observe a performance
reduction of 4.1 J&F compared to the combined setting
of BCE and alignment loss (w/ Lalign). This result indi-
cates that alignment loss enhances the model’s discrimina-
tive ability, improving its understanding complex motions
and enabling more precise alignment with given expression.
Ablation on different types of attention. Table 5b shows
the model’s performance with different attention configu-
rations. Using only motion attention allows the model to
aggregate long-term temporal information across frames,
improving motion modeling but neglecting object relation-
ships and scene-level context within each frame. Con-
versely, using only inter-object attention encodes spatial
relationships among objects including surrounding back-
grounds, but lacks temporal awareness. Combining both
attention types, our method effectively captures temporal
object dynamics as well as spatial interactions, resulting in
comprehensive global context understanding.

4.5. Analysis on object token of SAM2

As our method solely relies on the object tokens of SAM2,
it is important to investigate whether they contain sufficient
information to model diverse aspects of corresponding ob-
jects. To this end, we conducted two experiments to ex-
plore whether these tokens capture motion information from
their corresponding masks and whether they possess a min-
imally sufficient level of semantic knowledge to align with
language expressions.

First, we analyzed the relationship between object to-
kens and their corresponding masks by comparing the co-
sine similarity of object tokens based on their mIoU (mean
Intersection over Union) of their masks. As illustrated in
Figure 4, the similarity between tokens tends to increase
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"cow in the front first then moving to right"

"It enthusiastically chases and pounces on the wand."

"The cat not engaging with the feather toy took a few steps to the left."

"The cow positioned at the far end."

Figure 5. Qualitative results of our model on MeViS. SOLA shows its ability to understand complex language expressions.

nearly proportionally to the mIoU. This suggests a correla-
tion between the spatial proximity of masks and the sim-
ilarity of their object tokens. It provides a reasonable in-
dication that object tokens implicitly encode spatial infor-
mation, which can be extended to spatial trajectories when
temporally connected across frames.

Second, to assess the degree of semantic content en-
coded in the object tokens, we conducted a simple classi-
fication task using the PASCAL-VOC dataset [6], an image
dataset containing 20 object categories with pixel-level seg-
mentation and class annotations per mask. Specifically, we
added a linear classification head on top of the object to-
kens and trained it to predict object categories. The clas-
sifier achieved a maximum accuracy of 85.3%, indicating
that the tokens may possess at least a basic ability to differ-
entiate between object classes, and thus contain meaningful
semantic information.

These findings suggest that SAM2 object tokens obtain
intrinsic properties such as object motion and semantic in-
formation. Their potential to encode such objectness makes
them a promising candidate for aligning with language ex-
pressions, offering a lightweight module design.

4.6. Qualitative results
In Figure 5, our proposed method demonstrates its ability
to understand complex language expressions. The model
captures both appearance cues—such as “The cat” and
“The cow” attributes—and complex motion cues, includ-
ing “moving to right”. SOLA can select the referred ob-
ject even when the expression relies solely on motion (e.g.,
“chases”, “pounces”).

5. Conclusion and discussion
We proposed SOLA, a novel framework that leverages
SAM2 object tokens as compact video-level object repre-
sentation. We align these object tokens with language fea-
tures using a lightweight track selection module with only
32.9M trainable parameters. Additionally, we employ an
IoU-based pseudo-labeling strategy to effectively bridge the
modality gap between SAM2 representations and language
features. Our experiments demonstrate that SOLA achieves
state-of-the-art results on the MeViS dataset. This validates
the effectiveness of SOLA in addressing the challenges of
complex motion understanding and multi-modal alignment
in RVOS.
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Referring Video Object Segmentation via Language-aligned Track Selection

Supplementary Material

A. Additional qualitative results

Qualitative results on MeViS. Figure A.1 presents the
qualitative results on MeViS [4], comparing the perfor-
mance of DsHmp [9] with SOLA. Our approach consis-
tently demonstrates superior capability in accurately select-
ing the target object as specified by the referring expres-
sion. Specifically, Figure A.2 illustrates scenarios involving
a single video with two distinct expressions. SOLA accu-
rately identifies the precise object corresponding to each ex-
pression, whereas DsHmp demonstrates limitations in dis-
tinguishing between objects described by different expres-
sions. Figure A.3 illustrates a scenario where the given ex-
pression exclusively describes motion-related information
(e.g., “Going right.”). Our language-aligned track selection
module can establish correspondence with the expression
using motion cues from the language alone, independently
of appearance-based features.

Qualitative results on Ref-YouTube-VOS. Figure A.4
presents the qualitative results on the Ref-YouTube-
VOS [25] dataset in a zero-shot setting, where the model
has been trained on MeViS dataset. The results highlights
our model’s remarkable capability to generalize across di-
verse videos and expressions, despite not having seen the
dataset during training. This generalization underscores the
strength of our approach in leveraging the intrinsic robust-
ness of SAM2 representations.

B. Results on corrupted setting

To demonstrate the robustness of our method, we evaluated
it on a perturbed dataset with ImageNet-C [10] derived cor-
ruption. we intentionally corrupted all video frames with
gaussian noise or motion blur, simulating common distor-
tions in real-world scenarios such as low-light environments
or rapid camera movements. Since these perturbations rep-
resent data types not originally present in the dataset, our
method’s ability to effectively handle them shows its ro-
bustness inherited from SAM2 and highlights its suitability
for practical applications. Table A.1 presents the quantita-
tive results, showing that our proposed method outperforms
previous approaches [4, 9, 12] even under corruption sce-
narios.

Qualitative results on MeViS with image corruption.
Figures A.5 and A.6 visualize the results presented in Ta-
ble A.1. These results demonstrate that SOLA consistently
retains its ability to select the correct object even in cor-
rupted environments.

Methods Algorithm J&F J F

ReferFormer [12]

Motion blur

26.3 25.4 27.1
LMPM [4] 33.3 31.2 35.4
DsHmp [9] 38.0 35.0 41.1
SOLA 39.8 36.6 43.0

ReferFormer [12]

Gaussian
noise

26.9 24.0 29.9
LMPM [4] 36.0 33.4 38.6
DsHmp [9] 43.4 39.5 47.2
SOLA 44.4 40.5 48.3

Table A.1. Quantitative result on a corrupted version of
MeViS. The best results are in bold. The models are trained on
the original training set and evaluated on the corrupted version of
the validation set. The image corruption algorithms are derived
from ImageNet-C [10], with corruption severity 5.

C. Additional ablation studies on MeViS

Existence of background object tokens. The quantita-
tive results presented in Table A.2a underscore the effec-
tiveness of incorporating background object tokens during
both training and inference. During training, background
object tokens refer to object tokens corresponding to mask
tracks that have low IoU with the ground-truth mask track,
while during inference, they are derived from mask tracks
obtained using grid point prompts. Given that the inter-
object attention is designed to capture object relationships
and scene-level understanding, the inclusion of background
object tokens in both training and inference significantly en-
hances performance. This comprehensive interactions be-
tween foreground and background objects proves its effec-
tiveness, enabling a more enhanced video-level understand-
ing of language.
Ablation on the number of object-language alignment
layers. Table A.2b shows the results of using different
numbers of attention block layers. Our method achieves
the highest performance when two layers are adopted, com-
pared to the settings with one or three layers.

D. Detailed implementation details

Precomputing SAM2 object tokens. Since our method
operates with a fully frozen SAM2 and trains only the
language-aligned selection module using object tokens,
we adopt a highly efficient training strategy similar to
FuseMix [27]. Specifically, we first perform SAM2 mask
propagation on the given RVOS dataset to generate can-

1



Train Inference J&F J F

✗ ✗ 45.7 42.4 48.9
✓ ✗ 47.5 43.9 51.1
✓ ✓ 48.6 45.2 52.1

(a) Effects of including background object tokens.

# of Alignment Layers J&F J F

1 42.5 40.0 45.1
2 48.6 45.2 52.1
3 48.2 44.8 51.5

(b) Effects of the number of object-language alignment layers.

Table A.2. Additional ablation studies on various settings of
our method.

didate mask tracks and their corresponding object tokens
in advance. By precomputing these tokens beforehand,
we eliminate the need for SAM2 inference during train-
ing phase, allowing us to focus solely on optimizing the
language-aligned track selection module. The entire train-
ing process, using the MeViS [4] training dataset, takes ap-
proximately 7 hours on a single RTX 3090 GPU.
Track generation. We employ grid points and bounding
boxes from the object detection model, Grounding DINO
(GDINO)-T [19] every fourth frame to generate prompt
masks, which serve as input for the SAM2-L [24] video
predictor. To reduce redundant mask track generation, we
filter out similar prompt masks based on their Intersection
over Union (IoU) scores. Specifically, we first propagate
the mask track sequence starting from the largest prompt
mask. Then, for each subsequent prompt mask, we filter
it out if its IoU with the previously generated mask tracks
at the corresponding frame exceeds 0.7, ensuring that only
distinct prompt masks propagate new tracks.
Language-aligned track selection module. We employ
pre-trained RoBERTa [20] as the text encoder. Training is
conducted over 13 epochs, with an initial learning rate of
5e-6 that gradually decreases throughout training. We set
the hyperparameter values for λ1, λ2, Nneg, τ to 1.0, 0.3,
32, and 0.5, respectively.

E. Limitations and future works
While our approach effectively solve RVOS, certain aspects
remain beyond the scope of our work. The training objec-
tives of the text encoder and the RVOS model differ: the text
encoder is trained to identify the best matching words from
the vocabulary, while the RVOS model focuses on extract-
ing key cues from sentences essential for locating the cor-
responding objects. In our future work, we aim to explore
tuning the text encoder to capture features that are particu-
larly beneficial for the RVOS task.
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Figure A.1. Qualitative results on MeViS. Our proposed method outperforms previous state-of-the-art approach [9] in terms of mask
quality and tracking ability, while ensuring accurate segmentation of the corresponding object based on the given expression.
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Figure A.2. Qualitative results on MeViS. Our proposed method outperforms previous state-of-the-art approach [9] in terms of accurate
selection of the corresponding object, while ensuring accurate segmentation of the corresponding object based on the given expression.
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Only Motion Expression
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Figure A.3. Qualitative results on MeViS. Our proposed method outperforms previous state-of-the-art approach [9] in terms of accurate
selection of the corresponding object, while ensuring accurate segmentation of the corresponding object based on the given expression.
Notably, despite the given expression focusing solely on motion information, our model effectively handles the task without relying on
appearance cues.
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Figure A.4. Qualitative results on Ref-YouTube-VOS. Our proposed method outperforms previous state-of-the-art approach [9] in terms
of accurate selection of the corresponding object, while ensuring accurate segmentation of the corresponding object based on the given
expression.
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Figure A.5. Qualitative results on corrupted version of MeViS. Despite the gaussian noise distortion, our method generates high-quality
outputs, demonstrating its robustness and effectiveness in handling perturbed data. Compared to previous work, our results maintain their
performance even under the corrupted setting.
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Figure A.6. Qualitative results on corrupted version of MeViS. Despite the motion blur distortion, our method generates high-quality
outputs, demonstrating its robustness and effectiveness in handling perturbed data. Compared to previous work, our results maintain their
performance even under the corrupted setting.
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